

2nd Tdyn RamSeries **Training Session**

Time	Content
9:45h	Reception of the session attendees
10:00h	Beginning of the session
	Tdyn RamSeries Advanced Tools
11:00h	Coffe break
11:15h	Tdyn RamSeries applied case 1
12:30h	Tdyn RamSeries applied case 2
13:30	Questions and comments
13:45h	End of session

- Composite and laminate materials within Tdyn library:
 - > Generation/management.
 - > Importing/exporting materials' database.
- ✓ Specific numerical tools implemented in Fibre4Yards: Custom connection modelling
- ✓ Definition of directional local axes over complex geometries.
- ✓ FEA Non-Linear Dynamic Analysis applied to vessels.
- ✓ Fatigue Damage Assessment on composites and laminate materials:
 - > Brief description of theory.

FIBRE

🖉 FIBREGY 🛛

Brief description of methodology.

Composite materials in Tdyn RamSeries

Composites & Laminates generation/management

Analysis Simulation dimension: 3D • Analysis type: Static Analysis • Material constitutive model: Linear materials • Geometric constitutive model: Linear geometry • Boundary conditions: Linear boundary conds. • V Use Laminate/Composite materials Internal triangular element: Drill-Rot • Marine tools Fatigue damage assessment SN curves file: /problemtypes/comp	 ✓ Based on Class Societies rules. ✓ Rule of Mixtures theory. ✓ Allows to customize the properties of the layers, and create laminates. 						
element types Flement types Seams Solids Cables Membranes	 Materials and properties Beams Shells Custom properties Physical properties Physical properties Physical properties Poly Concrete Poly Plasticity Plasticity Plasticity Plasticity Plasticity Controtecic Plasticity Plasticity Controtecic Plasticity Plastici	Composite laminate Laminate definition Laminate name sample_laminate_Classic Constitutive model Classic Material E_Glass_Epoxy_Ortho Select material Sequence 1 45,-45]5 Number of layers 2 Fiber angle 0 deg Thickness 0.0 m Previously defined laminates Existing laminates sample_laminate_Serial_Parallel & Total laminate thickness Total thickness 0.0020874 m	Laminate composition Material Angle Thickness Layers E_Gla 0 0.0004576 2 IM6 45 0.0005861 2 Visual description E_Glass_Epoxy_Orth IM6_Carb_Epoxy 				
	BRE YARDS		5				

Composites & Laminates generation/management: Materials' Database

<complex-block></complex-block>	Create functio	on for A		×	Create function for B			×			
<complex-block></complex-block>	-Function variable	es			-Function variables						
<complex-block></complex-block>	X Matrix value fo	or A			Matrix value for B						
<complex-block></complex-block>	-Matrix value for A	Α			-Matrix value for B						
<complex-block></complex-block>	A _{1,1} :	0.3 🚺 A _{1,2} :	0.0 2 A _{1,3} :	0.0 🔰	B _{1,1} : 0.3 2	B _{1.2} : 0.0	S B _{1,3} :	0.0			
<complex-block></complex-block>	A _{2.1} :	0.0 2 A _{2.2} :	0.3 🚺 A _{2.3} :	0.0 🔰	B _{2.1} : 0.0 2	B _{2.2} : 0.3	S B _{2.3} :	0.0 2			
<complex-block></complex-block>	A _{3,1} :	0.0 🚺 A _{3.2} :	0.0 2 A _{3.3} :	0.3	B _{3.1} : 0.0 2	B _{3.2} : 0.0	∑ B _{3.3} :	0.3			
<complex-block></complex-block>		<u>c</u>	k <u>C</u> ancel			<u>O</u> k <u>C</u> ance	1				
<complex-block></complex-block>	Create function	on for B		×	Create function for D			×	Create function	n for H	×
Image: Structures I	-Function variable	es			-Function variables				-Function variable	-	
Image: whether the	X Matrix value fo	or B			X Matrix value for D				Matrix value fe	, , U	
 kuť biť biť biť biť biť biť biť biť biť bi	Matrix value for E	В			-Matrix value for D				Matrix value for		
L L L L L L L L L L	B1 1:	0.3 X B ₁ 2:	0.0 E B1 3:	0.0	D11: 0.3	D ₁₂ : 0.0	2 D13	0.0	-Matrix value for H		
In the part of par	B _{2 1} :	0.0 Σ B _{2.2} :	0.3 Σ B _{2.3} ;	0.0 2	D _{2 1} : 0.0	D _{2.2} : 0.3	D ₂₃ :	0.0	H _{1,1} :	0.3 11.2:	0.0
<complex-block></complex-block>	B _{3.1} :	0.0 Σ B _{3.2} :	0.0 Σ B _{3.3} :	0.3 2	D _{3.1} : 0.0 2	D _{3.2} : 0.0	2 D _{3.3} :	0.3	H _{2.1} :	0.0 Σ H _{2.2} :	0.3
I UNIT INTERCEY INTERCENT							1			Ok Cancel	
<complex-block></complex-block>		<u>_</u>	<u>k</u> <u>C</u> ancel								
FIBREGY FI			i.			A B B D 0 0	0 0 H			Solid referen	e model
	-		E Turon	E Otoro)	· Martinaz "Multi		dura far tha	maahania		f composito lom	inata
			<i>F. Turon,</i> structure	<i>F. Otero, ></i> s considerii	K. <i>Martinez</i> . "Multi ng mixed boundar	-scale proceery conditions'	dure for the '. Composite	mechanic Structure	al analysis o es. Vol 322,	f composite lam 15 October 2023	inate 3. 117343.

Fatigue Damage Assessment for composite and laminate materials

FDA composites: methodology

FDA composites: theory

Failure criteria - Equivalent stress

(Based on anisotropic mapping)

$$(\sigma - N)_{UD90} \equiv (\sigma - N)_{matrix} \longrightarrow \sigma_{UD90} \equiv \sigma_{eq} = \sqrt{\sigma_2^2 + (f_{12} \cdot \sigma_{12})^2}$$

S-N fatigue life curves

Non-Linear Dynamic FEA applied to vessels

			Binden Binden
Iteration type: Full Newton-Raphson Max iterations: 10	CONSTRAINTS	MATERIALS	
 Manue analysis data Manue analysis data Type: Direct integration At (fluterpolation fun) Number of steps: 100 Metagration data Integration method: Implicit (Energy Conserving/De Alpha E-C/D (c): 0.1 Initial conditions: None Mamping Data Damping type: Rayleigh damping Damping type: Rayleigh damping Damping trate: 0.05 at f(Interpolation fun) ek: 0.003 	<complex-block></complex-block>		
	REAYARDS		11
	SHIPPARD FOR THE FUTURE		

Shaping Tomorrow with Advanced Simulation Engineering

Thank You!

