

IACM Special Interest Conference

NUMERICAL MODEL FOR THE CHARACTERIZATION OF 3D PRINTED COMPOSITES

mdolz@cimne.upc.edu

COMPOSITES AND ADVANCED MATERIALS FOR MULTIFUNCTIONAL STRUCTURES (CAMMS)

Montserrat Dolz

Francesc Turon Xavier Martinez

ORMULATION
KPERIMENTAL
ESULTS
ONCLUSIONS

ENTAL SETUPS

TABLE OF CONTENTS

INTRODUCTION

CI

INTRODUCTION

INTRODUCTION

Objective:

Simulate a 3D printed material considering the anisotropy produced by the manufacturing process using the Space Mapping constitutive model

- The **anisotropy** present in the resin that bonds the different manufacturing planes will be taken into consideration in the model through the implementation of a resin constitutive model.
- Therefore: Anisotropy will be included in the model though the resin constitutive model.
- A methodology based on **Space Mapping** is proposed to overcome the difficulties in simulating the orthotropic nonlinear behavior of 3D printed composites. This methodology allows the use of known nonlinear isotropic formulations and offers numerical advantages.
- The constitutive model used for the characterization of the material is the serial-parallel mixing theory.

FORMULATION

0 N

CIMNE

FORMULATION SPACE MAPPING

Sergio Oller, Eduardo Car, and Jacob Lubliner. "*Definition of a general implicit orthotropic yield criterion*". In: Computer Methods in Applied Mechanics and Engineering 192.7-8 (2003), pp. 895–912. ISSN: 00457825. DOI: 10.1016/S0045-7825(02)00605-9.

7

By modifying the **compressive strength**

ratio, the anisotropic behaviour of the matrix is characterized.

SP MIXING THEORY

- Numerical models for composite material characterization will be based on the Serial/Parallel mixing theory.
- Is a constitutive equation that provides the response of the composite by coupling the constitutive equations of its components.

Parallel behavior

6/27/2023

EXPERIMENTAL SETUPS

00

MATERIAL DEFINITION

- The objective is to numerically simulate material testing experiments obtained from literature.
- Literature provides mechanical properties of materials in their raw form and the properties achieved through additive manufacturing.
- Mechanical properties of printed materials are influenced by the anisotropy of the printing process.
- Anisotropy parameter is determined using space mapping.
- The focus is on calibrating the spatial mapping values for resin.

11

MATERIAL DEFINITION

- Analysis will be performed for
 - Resin
 - Resin with short fibres
 - Resin with continuous fibres.

Z

- Analyses are made for 3 cases:
 - Parts printed at 0°.
 - Parts printed at 90°.
 - Parts printed at 45°

MATERIAL DEFINITION - PLA

	Direction	PLA
	$E_1 (0^{\circ})$	3376
Tensile modulus (MPd)	<i>E</i> ₂ (90°)	3125
In-plane Shear Modulus (MPa)	<i>G</i> ₁₂	1092
Deissen eseffisient	v_{12}	0.331
Poisson coefficient	v_{23}	0.325
Tensile Strength (MPa)	σ ₁ (0°)	54.7

Ratio of compressive strengths

	Direction	PLA
	<i>E</i> ₁ (0°)	3376
Tensile modulus (MPd)	E ₂ (90°)	3125
In-plane Shear Modulus (MPa)	G ₁₂	1092
Deissen es efficient	v_{12}	0.331
Poisson coefficient	v_{21}	0.325
Topoilo Strongth (MDg)	$\sigma_1 (0^\circ)$	54.7
Tensile Strength (MPd)	σ ₂ (90°)	37.1
In-plane Shear Strength (MPa)	$ au_{12}$	18.0

Experimental mechanical properties

RESULTS

CIMNE[®]

$\frac{\overline{\sigma_x}}{\sigma_x} \quad \frac{\overline{\sigma_y}}{\sigma_y} \quad \frac{\overline{\sigma_z}}{\sigma_z} \quad \frac{\overline{\tau_{xy}}}{\tau_{xy}} \quad \frac{\overline{\tau_{xz}}}{\tau_{xz}} \quad \frac{\overline{\tau_{yz}}}{\tau_{yz}}$ $1 \quad 1.475 \quad 1.475 \quad 1.75 \quad 1 \quad 1$

EXCELENCIA SEVERO OCHOA

THE FUTURE

RESULTS – PLA

6/27/2023

MATERIAL DEFINITION – PLA & Short CF

	Direction	PLA + 15% CF
	$E_1 (0^{\circ})$	7541
Tensile modulus (MPd)	<i>E</i> ₂ (90°)	3920
In-plane Shear Modulus (MPa)	G ₁₂	1268
Deissen er effisient	v_{12}	0.400
Poisson coefficient	v_{23}	0.150
Tensile Strength (MPa)	σ_1	53.4

Material	$\frac{\overline{\sigma_x}}{\sigma_x}$	$rac{\overline{\sigma_y}}{\sigma_y}$	$rac{\overline{\sigma_z}}{\sigma_z}$	$rac{\overline{ au_{xy}}}{ au_{xy}}$	$rac{\overline{ au_{xz}}}{\overline{ au_{xz}}}$	$rac{\overline{ au_{yz}}}{ au_{yz}}$
PLA	1	1.475	1.475	1.75	1	1
PLA & CF	1	1.51	1.51	1.63	1	1

Ratio of compressive strengths

	Direction	PLA + 15% CF
	<i>E</i> ₁ (0°)	7541
Tensile modulus (MPd)	<i>E</i> ₂ (90°)	3920
In-plane Shear Modulus (MPa)	G ₁₂	1268
Deissen as fisient	v_{12}	0.400
Poisson coefficient	v_{21}	0.150
	$\sigma_1 (0^\circ)$	53.4
Tensile Strength (MPd)	σ ₂ (90°)	35.4
In-plane Shear Strength (MPa)	$ au_{12}$	18.9

Experimental mechanical properties

$\frac{\overline{\sigma_x}}{\sigma_x}$	$rac{\overline{\sigma_y}}{\sigma_y}$	$\frac{\overline{\sigma_z}}{\sigma_z}$	$rac{\overline{ au_{xy}}}{\overline{ au_{xy}}}$	$rac{\overline{ au_{xz}}}{ au_{xz}}$	$rac{\overline{ au_{yz}}}{ au_{yz}}$
1	1.51	1.51	1.63	1	1

EXCELENCIA SEVERO OCHOA

THE FUTURE

RESULTS – PLA & Short CF

RESULTS – PLA & PLA + Short CF

MATERIAL DEFINITION - Nylon & CF

	Direction	Nylon	Cont. CF
	<i>E</i> ₁ (0°)	1000	136556
Tensile modulus (MPd)	<i>E</i> ₂ (90°)		7187
In-plane Shear Modulus (MPa)	G ₁₂		4000
	v_{12}	0.35	0.27
Poisson coefficient	v_{23}		0.40
Tensile Strength (MPa)	σ_1	45.5	1944
Volumetric participation		55%	45%

Material	$\frac{\overline{\sigma_{\chi}}}{\sigma_{\chi}}$	$rac{\overline{\sigma_y}}{\sigma_y}$	$\frac{\overline{\sigma_z}}{\sigma_z}$	$rac{\overline{ au_{xy}}}{ au_{xy}}$	$rac{\overline{ au_{xz}}}{ au_{xz}}$	$rac{\overline{ au_{yz}}}{ au_{yz}}$
Nylon + CF	1	5.5	1	1.8	1	1

Ratio of compressive strengths

	Direction	Composite
	<i>E</i> ₁ (0°)	62000
Tensile modulus (MPd)	<i>E</i> ₂ (90°)	430
In-plane Shear Modulus (MPa)	<i>G</i> ₁₂	1100
Tomaila Strongth (MDg)	σ ₁ (0°)	875
Tensile Strength (MPd)	σ ₂ (90°)	8.54
In-plane Shear Strength (MPa)	$ au_{12}$	21.8

Experimental mechanical properties

$\frac{\overline{\sigma_x}}{\sigma_x}$	$rac{\overline{\sigma_y}}{\sigma_y}$	$\frac{\overline{\sigma_z}}{\sigma_z}$	$rac{\overline{ au_{xy}}}{ au_{xy}}$	$rac{\overline{ au_{xz}}}{ au_{xz}}$	$rac{\overline{ au_{yz}}}{ au_{yz}}$
1	5.5	1	1.8	1	1

RESULTS – Nylon & CF

— Experimental sample

-30 -

CONCLUSIONS

05

CONCLUSIONS

- Space Mapping allows to capture the anisotropy generated by the 3D printing process in isotropic materials.
- It is also effective in capturing anisotropy in composite materials.
- Using Space Mapping to define material behavior simplifies calculations, as isotropic formulations are faster than anisotropic ones.

ACKNOWLEDGEMENTS

This research was supported by the European Commission under grant agreement No 101006860. We thank our colleagues from FIBRE4YARDS who provided insight and expertise that greatly assisted the research

NUMERICAL MODEL FOR THE CHARACTERIZATION OF 3D PRINTED COMPOSITES

COMPOSITES AND ADVANCED MATERIALS FOR MULTIFUNCTIONAL STRUCTURES (CAMMS)

Montserrat Dolz

Francesc Turon Xavier Martinez

mdolz@cimne.upc.edu