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Automated Tape Laying Process
Introduction

The Automated Tape Laying (ATL)
Process uses prepregs to consolidate a
structure
It is composed out of:

1. Material

2. Guide roll

3. Compaction roll

4. Heating element

5. Reflector

6. Temperature sensor

7. Nip point

8. Mould
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Figure 1. Process machine elements
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Automated Tape Laying Process
Introduction

The case of study is an ATL machine located at INEGI’s laboratories, Porto, Portugal

Figure 2. Real ATL process machine. Front
view

Figure 3. Real ATL process machine.
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Problem
Introduction

■ The relevant temperature is located
at the Nip Point. Indicator 7 at
Figure 4.

■ No sensor can be placed

■ A model-based control strategy
has to be implemented

■ A popper model needs to replicate
the real process. Digital Twin
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Figure 4. Process machine elements

Digital Twin

■ The model requires knowing the
thermal properties as function of
temperature for the composite
material:

▶ Thermal conductivity
▶ Thermal-Optical properties
▶ Specific heat
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Problem
Introduction

Fundamental equation:
∂

∂t

∫
Vm

ρm · cp(Tm) · TmdVm =

∫
Vm

q”rad,m · dSm +

∫
Vm

q”conv,m · dSm +

∫
Vm

q”cond,m · dSm

+

∫
Vm

km(Tm) · (∇Tm · n̂) dSm −
∫
Vm

ρm · cpm(Tm) · Tm · (U · n̂) · dSm

(1)

Radiation energy balance:

[Jλ,j ] = [rj ]nx1 [Gλ,j ]nxn + [τj ]nx1 [Gλ,j ]nxn + [εj ]nx1 [Eλ,j ]nxn

[Gλ,j ] =
(
[I ]nxn − [F ]nxn

(
[rj ]nx1 + [τj ]nx1

)
[F ]nxn [εj ]nx1 [Eλ,j ]nxn

)−1

[q”rad ,m] = [Jλ,j ]− [Gλ,j ]

(2)
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Objectives
Introduction

■ Estimate the temperature distribution along the composite material including
the Nip Point, as function of time.

■ Measurements:

▶ Specific heat as function of
temperature

▶ Thermal conductivity as function
of temperature

▶ Thermal-optical properties as
function of temperature
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2.1 Composite material

2.2 Thermal characterization
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Composite material
Materials and Methods

Toray Cetex - TC910
PA6 matrix base
Thermal properties according to its
data-sheet:

■ Glass transition temperature: 60 ◦C

■ Melting temperature: 233 ◦C

■ Specific heat as function of
temperature: ???

■ Thermal conductivity as function of
temperature: ???

■ Thermal-optical properties as
function of temperature: ???

Figure 5. Composite material prepreg.
PA6 matrix-based 7/28
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Thermal characterization
Materials and Methods

Standard test procedures

SPECIFIC HEAT

■ Standard test procedure:

▶ ASTM E 1269-01

■ Test apparatus:

▶ Differential Scanning Calorimeter
Q200 from TA Instruments.

Figure 6. DSC Q200 TA Instruments
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Thermal characterization
Materials and Methods

Standard test procedures

THERMAL CONDUCTIVITY

■ Standard test procedure:

▶ Laser Flash method. ASTM
E-1461

Figure 7. Laser Flash method working principle
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Thermal characterization
Materials and Methods

Standard test procedures

THERMAL CONDUCTIVITY

■ Standard test procedure:

▶ Laser Flash method. ASTM
E-1461 There is no such machine at

INEGI’s laboratory
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Standard test procedures

THERMAL CONDUCTIVITY

■ Standard test procedure:

▶ Laser Flash method. ASTM
E-1461 The machine only measures in

one direction

Figure 7. Laser Flash method working principle
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Thermal characterization
Materials and Methods

In-house test procedures

THERMAL CONDUCTIVITY

■ Thermal-Vacuum chamber

▶ Pressures under 10−5 mPa

■ No external interferences

▶ Radiation
▶ Convection

Figure 8. Thermal conductivity in-house
procedure
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Thermal characterization
Materials and Methods

In-house test procedures

THERMAL CONDUCTIVITY

Figure 9. Thermal conductivity in-house
procedure. Theoretical principle

dT

dt
= αx (cp(T ), ρ, kx(T )) ·

(
d2T

dx2

)
(3)

T p+1
i − T p

i

∆t
=

kx(T
p
i )

ρ · cp(T p
i )

·

(
T p
i+1 − 2T p

i + T p
i−1

∆x2

)
(4)
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Thermal characterization
Materials and Methods

In-house test procedures

THERMAL CONDUCTIVITY

■ The heater is an electrical resistance

■ The heater has an aluminium plate
to conduct the heat from the
resistance to the composite material

Figure 10. Thermal conductivity in-house
test equipment 12/28
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Thermal characterization
Materials and Methods

In-house test procedures

THERMAL-OPTICAL PROPERTIES

■ Emissivity and absorptivity

■ Reflectivity

Standard procedure to calibrate
pyrometers

Figure 11. In-house designed test
procedure for thermal-optical properties

measurement

1. Heating element

2. Aluminium plate

3. Material sample

4. Pyrometer

5. Contact temperature sensor, material

6. Contact temperature sensor, ambient
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Thermal characterization
Materials and Methods

In-house test procedures

THERMAL-OPTICAL PROPERTIES
Basic correlations:

ε+ τ + ρ = 1 (5)

τ = 0 ε ≈ α (6)

ε+ ρ = 1 (7)

εmat =
εpyro · T 4

pyro − T 4
enclosure

T 4
mat − T 4

enclosure

(8)

Figure 12. In-house designed test
procedure
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Results

3. Results

3.1 Specific heat

3.2 Thermal Conductivity

3.3 Thermal-Optical properties

3.4 Simulation
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Specific heat
Results

Specific heat
The results from the standard procedure for the composite material sample
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(b) Test sample 2

Figure 13. Specific heat results 1
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Figure 14. Specific heat results 2
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Thermal Conductivity
Results

Thermal conductivity
The results from the in-house designed procedure for the composite material sample
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Figure 15. Thermal conductivity results 1
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Results

Thermal conductivity
The results from the in-house designed procedure for the composite material sample
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Figure 16. Thermal conductivity results 2
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Thermal-Optical properties
Results

Thermal-optical properties
The results from the in-house designed procedure for the composite material sample
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Figure 17. Thermal-optical properties results 1
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The results from the in-house designed procedure for the composite material sample
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Figure 18. Thermal-optical properties results 2
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Simulation
Results

Test and simulation
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(a) Test and simulation 1
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(b) Test and simulation 2

Figure 19. Test and simulation on the real machine∗
∗J. de Sá Rodrigues, P. T. Gonçalves, L. Pina, and F. Gomes de Almeida, “Modelling the Heating Process in the Transient and Steady State of an In
Situ Tape-Laying Machine Head,” Journal of Manufacturing and Materials Processing, vol. 6, no. 1, p. 8, Jan. 2022, doi: 10.3390/jmmp6010008.
[Online]. Available: http://dx.doi.org/10.3390/jmmp6010008 22/28
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Conclusions

■ The Thermal conductivity test considers a uni-directional conductivity in a thin
material sample, avoiding the convective effects.
▶ Nonetheless, the radiation component has to be included into the fundamental

equation to minimize the uncertainty.
▶ Having a procedure which allows to neglect the convective effects, is significantly

cheaper than producing material samples to measure the thermal conductivity
perpendicular to the fibres.

■ The thermal-optical test procedure, as a procedure to calibrate the optical
readings of a pyrometer, allows to obtain the emissivity values as function of the
composite material temperature.
▶ This characteristic, allows to use any pyrometer available, including pyrometers with

factory fixed parameters.
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Conclusions

■ The proposed methodology for thermal characterization of a composite material,
specifically unidirectional prepregs, contributed to predict the temperature of the
measuring point for the ATL process.

▶ Knowing the composite properties, allows to fine adjust heat transfer parameters,
minimizing the uncertainties.

▶ The temperature distribution can be estimated then, a model-based control strategy
can be applied, for example, a Model Predictive Control strategy.
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