

CONVERTING KNOWLEDGE INTO VALUE FOR OVER 35 YEARS Since 1986

Composite material thermal characterization for a digital twin-based model of an automated tape-laying process

MSc. Jhonny de Sá Rodrigues

Table of contents

1. Introduction

- 1.1 Automated Tape Laying Process
- 1.2 Problem
- 1.3 Objectives

2. Materials and Methods

- 2.1 Composite material
- 2.2 Thermal characterization

3. Results

- 3.1 Specific heat
- 3.2 Thermal Conductivity
- 3.3 Thermal-Optical properties
- 3.4 Simulation
- Conclusions
 Acknowledgements

Since 1986

Introduction

1. Introduction

- 1.1 Automated Tape Laying Process
- 1.2 Problem
- 1.3 Objectives

The Automated Tape Laying (ATL) Process uses prepregs to consolidate a structure

It is composed out of:

1. Material

The Automated Tape Laying (ATL) Process uses prepregs to consolidate a structure

It is composed out of:

- 1. Material
- 2. Guide roll

The Automated Tape Laying (ATL) Process uses prepregs to consolidate a structure

It is composed out of:

- 1. Material
- 2. Guide roll
- 3. Compaction roll

Figure 1. Process machine elements

The Automated Tape Laying (ATL) Process uses prepregs to consolidate a structure

It is composed out of:

- 1. Material
- 2. Guide roll
- 3. Compaction roll
- 4. Heating element

The Automated Tape Laying (ATL) Process uses prepregs to consolidate a structure

It is composed out of:

- 1. Material
- 2. Guide roll
- 3. Compaction roll
- 4. Heating element
- 5. Reflector

Figure 1. Process machine elements

The Automated Tape Laying (ATL) Process uses prepregs to consolidate a structure

It is composed out of:

- 1. Material
- 2. Guide roll
- 3. Compaction roll
- 4. Heating element
- 5. Reflector
- 6. Temperature sensor

The Automated Tape Laying (ATL) Process uses prepregs to consolidate a structure

It is composed out of:

- 1. Material
- 2. Guide roll
- 3. Compaction roll
- 4. Heating element
- 5. Reflector
- 6. Temperature sensor
- 7. Nip point

The Automated Tape Laying (ATL) Process uses prepregs to consolidate a structure

It is composed out of:

- 1. Material
- 2. Guide roll
- 3. Compaction roll
- 4. Heating element
- 5. Reflector
- 6. Temperature sensor
- 7. Nip point
- 8. Mould

The case of study is an ATL machine located at INEGI's laboratories, Porto, Portugal

Figure 2. Real ATL process machine. Front view

Figure 3. Real ATL process machine.

■ The relevant temperature is located at the **Nip Point**. Indicator 7 at Figure 4.

- The relevant temperature is located at the **Nip Point**. Indicator 7 at Figure 4.
- No sensor can be placed

Figure 4. Process machine elements

- The relevant temperature is located at the **Nip Point**. Indicator 7 at Figure 4.
- No sensor can be placed
- A model-based control strategy has to be implemented

Figure 4. Process machine elements

- The relevant temperature is located at the **Nip Point**. Indicator 7 at Figure 4.
- No sensor can be placed
- A model-based control strategy has to be implemented
- A popper model needs to **replicate** the real process. *Digital Twin*

Figure 4. Process machine elements

- The relevant temperature is located at the **Nip Point**. Indicator 7 at Figure 4.
- No sensor can be placed
- A model-based control strategy has to be implemented
- A popper model needs to **replicate** the real process. *Digital Twin*

Digital Twin

The model requires knowing the thermal properties as function of temperature for the composite material:

- The relevant temperature is located at the **Nip Point**. Indicator 7 at Figure 4.
- No sensor can be placed
- A model-based control strategy has to be implemented
- A popper model needs to **replicate** the real process. *Digital Twin*

Digital Twin

- The model requires knowing the thermal properties as function of temperature for the composite material:
 - ► Thermal conductivity

- The relevant temperature is located at the **Nip Point**. Indicator 7 at Figure 4.
- No sensor can be placed
- A model-based control strategy has to be implemented
- A popper model needs to **replicate** the real process. *Digital Twin*

Digital Twin

- The model requires knowing the thermal properties as function of temperature for the composite material:
 - ► Thermal conductivity
 - ► Thermal-Optical properties

- The relevant temperature is located at the **Nip Point**. Indicator 7 at Figure 4.
- No sensor can be placed
- A model-based control strategy has to be implemented
- A popper model needs to **replicate** the real process. *Digital Twin*

Digital Twin

- The model requires knowing the thermal properties as function of temperature for the composite material:
 - ► Thermal conductivity
 - ► Thermal-Optical properties
 - Specific heat

Fundamental equation:

$$\frac{\partial}{\partial t} \int_{V_m} \rho_m \cdot cp(T_m) \cdot T_m dV_m = \int_{V_m} q''_{rad,m} \cdot dS_m + \int_{V_m} q''_{conv,m} \cdot dS_m + \int_{V_m} q''_{cond,m} \cdot dS_m + \int_{V_m} k_m(T_m) \cdot (\nabla T_m \cdot \hat{n}) dS_m - \int_{V_m} \rho_m \cdot cp_m(T_m) \cdot T_m \cdot (U \cdot \hat{n}) \cdot dS_m$$
(1)

Radiation energy balance:

$$[J_{\lambda,j}] = [r_j]_{n \times 1} [G_{\lambda,j}]_{n \times n} + [\tau_j]_{n \times 1} [G_{\lambda,j}]_{n \times n} + [\varepsilon_j]_{n \times 1} [E_{\lambda,j}]_{n \times n}$$

$$[G_{\lambda,j}] = ([I]_{n \times n} - [F]_{n \times n} ([r_j]_{n \times 1} + [\tau_j]_{n \times 1}) [F]_{n \times n} [\varepsilon_j]_{n \times 1} [E_{\lambda,j}]_{n \times n})^{-1}$$
(2)

$$[q^n_{rad,m}] = [J_{\lambda,j}] - [G_{\lambda,j}]$$

Estimate the temperature distribution along the composite material including the Nip Point, as function of time.

- Estimate the temperature distribution along the composite material including the Nip Point, as function of time.
- Measurements:

- Estimate the temperature distribution along the composite material including the Nip Point, as function of time.
- Measurements:
 - Specific heat as function of temperature

- Estimate the temperature distribution along the composite material including the Nip Point, as function of time.
- Measurements:
 - Specific heat as function of temperature
 - Thermal conductivity as function of temperature

- Estimate the temperature distribution along the composite material including the Nip Point, as function of time.
- Measurements:
 - Specific heat as function of temperature
 - Thermal conductivity as function of temperature
 - Thermal-optical properties as function of temperature

2. Materials and Methods

- 2.1 Composite material
- 2.2 Thermal characterization

Toray Cetex - TC910 PA6 matrix base **Thermal properties** according to its data-sheet:

■ Glass transition temperature: 60 °C

Toray Cetex - TC910 PA6 matrix base **Thermal properties** according to its data-sheet:

- Glass transition temperature: 60 °C
- Melting temperature: 233 °C

Toray Cetex - TC910 PA6 matrix base **Thermal properties** according to its data-sheet:

- Glass transition temperature: 60 °C
- Melting temperature: 233 °C
- Specific heat as function of temperature: ???

Toray Cetex - TC910 PA6 matrix base **Thermal properties** according to its data-sheet:

- Glass transition temperature: 60 °C
- Melting temperature: 233 °C
- Specific heat as function of temperature: ???
- Thermal conductivity as function of temperature: ???

Toray Cetex - TC910 PA6 matrix base **Thermal properties** according to its data-sheet:

- Glass transition temperature: 60 °C
- Melting temperature: 233 °C
- Specific heat as function of temperature: ???
- Thermal conductivity as function of temperature: ???
- Thermal-optical properties as function of temperature: ???

Thermal characterization

Standard test procedures SPECIFIC HEAT

- Standard test procedure:
 - ► ASTM E 1269-01
- Test apparatus:
 - Differential Scanning Calorimeter Q200 from TA Instruments.

Figure 6. DSC Q200 TA Instruments

i nermai characterization

Standard test procedures

THERMAL CONDUCTIVITY

- Standard test procedure:
 - ► Laser Flash method. ASTM E-1461

Standard test procedures THERMAL CONDUCTIVITY

- Standard test procedure:
 - ► Laser Flash method. ASTM E-1461

There **is no such machine** at INEGI's laboratory

Standard test procedures THERMAL CONDUCTIVITY

- Standard test procedure:
 - ► Laser Flash method. ASTM E-1461

The machine only measures in **one direction**

In-house test procedures THERMAL CONDUCTIVITY

- Thermal-Vacuum chamber
 - ▶ Pressures under 10⁻⁵ mPa

Figure 8. Thermal conductivity in-house procedure

In-house test procedures THERMAL CONDUCTIVITY

- Thermal-Vacuum chamber
 - ► Pressures under 10⁻⁵ mPa
- No external interferences
 - ► Radiation
 - ► Convection

Figure 8. Thermal conductivity in-house procedure

In-house test procedures THERMAL CONDUCTIVITY

Figure 9. Thermal conductivity in-house procedure. Theoretical principle

In-house test procedures THERMAL CONDUCTIVITY

The heater is an electrical resistance

Figure 10. Thermal conductivity in-house test equipment

Cinegi driving science & innovation

Materials and Methods Thermal characterization

In-house test procedures THERMAL CONDUCTIVITY

- The heater is an electrical resistance
- The heater has an aluminium plate to conduct the heat from the resistance to the composite material

Figure 10. Thermal conductivity in-house test equipment

In-house test procedures THERMAL-OPTICAL PROPERTIES

- Emissivity and absorptivity
- Reflectivity

In-house test procedures THERMAL-OPTICAL PROPERTIES

- Emissivity and absorptivity
- Reflectivity

Standard procedure to calibrate pyrometers

Figure 11. In-house designed test procedure for thermal-optical properties

In-house test procedures THERMAL-OPTICAL PROPERTIES

- Emissivity and absorptivity
- Reflectivity

Standard procedure to calibrate pyrometers

- 1. Heating element
- 2. Aluminium plate
- 3. Material sample
- 4. Pyrometer
- 5. Contact temperature sensor, material
- 6. Contact temperature sensor, ambient

Figure 11. In-house designed test procedure for thermal-optical properties measurement

In-house test procedures THERMAL-OPTICAL PROPERTIES

Basic correlations:

 $\varepsilon + \tau + \rho = 1$ (5)

$$au = \mathbf{0} \quad \varepsilon \approx \alpha \tag{6}$$

$$\varepsilon + \rho = 1$$
 (7)

$$\varepsilon_{\rm mat} = \frac{\varepsilon_{\rm pyro} \cdot T_{\rm pyro}^4 - T_{\rm enclosure}^4}{T_{\rm mat}^4 - T_{\rm enclosure}^4} \quad (8)$$

Results

3. Results

- 3.1 Specific heat
- 3.2 Thermal Conductivity
- 3.3 Thermal-Optical properties
- 3.4 Simulation

Results Specific heat

Specific heat

The results from the standard procedure for the composite material sample

Figure 13. Specific heat results 1

Results Specific heat

Specific heat

The results from the standard procedure for the composite material sample

Figure 14. Specific heat results 2

Results Thermal Conductivity

Thermal conductivity

The results from the in-house designed procedure for the composite material sample

Figure 15. Thermal conductivity results 1

Results Thermal Conductivity

Thermal conductivity

The results from the in-house designed procedure for the composite material sample

Figure 16. Thermal conductivity results 2

Results Thermal-Optical properties

Thermal-optical properties

The results from the in-house designed procedure for the composite material sample

Figure 17. Thermal-optical properties results 1

Results Thermal-Optical properties

Thermal-optical properties

The results from the in-house designed procedure for the composite material sample

Figure 18. Thermal-optical properties results 2

Results Simulation

Test and simulation

Figure 19. Test and simulation on the real machine*

* J. de Sá Rodrigues, P. T. Gonçalves, L. Pina, and F. Gomes de Almeida, "Modelling the Heating Process in the Transient and Steady State of an In Situ Tape-Laying Machine Head," Journal of Manufacturing and Materials Processing, vol. 6, no. 1, p. 8, Jan. 2022, doi: 10.3390/jmmp6010008. [Online]. Available: http://dx.doi.org/10.3390/jmmp6010008

4. Conclusions

Conclusions

- The Thermal conductivity test considers a uni-directional conductivity in a thin material sample, avoiding the convective effects.
 - ► Nonetheless, the radiation component has to be included into the fundamental equation to minimize the uncertainty.
 - ► Having a procedure which allows to neglect the convective effects, is significantly cheaper than producing material samples to measure the thermal conductivity perpendicular to the fibres.
- The thermal-optical test procedure, as a procedure to calibrate the optical readings of a pyrometer, allows to obtain the emissivity values as function of the composite material temperature.
 - ► This characteristic, allows to use any pyrometer available, including pyrometers with factory fixed parameters.

Conclusions

- The proposed methodology for thermal characterization of a composite material, specifically unidirectional prepregs, contributed to predict the temperature of the measuring point for the ATL process.
 - ► Knowing the composite properties, allows to fine adjust heat transfer parameters, minimizing the uncertainties.
 - ► The temperature distribution can be estimated then, a model-based control strategy can be applied, for example, a Model Predictive Control strategy.

5. Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006860

THANK YOU

M.Sc. JHONNY DE SÁ RODRIGUES jsrodrigues@inegi.up.pt

INSTITUTE OF SCIENCE AND INNOVATION IN MECHANICAL AND INDUSTRIAL ENGINEERING

www.inegi.pt

